

Welcome to elm-fluent’s documentation!

Contents:

	Overview

	Installation
	Stable release

	From sources

	Elm dependencies

	Tutorial
	Intro

	One-time project changes

	Extract localized text

	Substitutions

	Number substitutions and plural rules

	Message attributes

	HTML output

	Dynamic HTML output

	Final steps

	Number handling functions
	Fluent.number

	Fluent.formattedNumber

	Date handling functions
	Fluent.date

	Fluent.formattedDate

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.6.0 (2020-04-09)

	0.5.0 (2019-08-15)

	0.4.0 (2019-03-18)

	0.3.0 (2019-03-06)

	0.2.1 (2018-12-19)

	0.2.0 (2018-09-10)

	0.1.0 (2018-07-27)

Indices and tables

	Index

	Module Index

	Search Page

Overview

The big picture for using elm-fluent looks as follows (with some design
justifications thrown in). If you think this fits your needs, please see the
Installation docs and the Tutorial for the details you’ll need to
implement this in your app.

With elm-fluent, all localized text (i.e. text in a specific human language) is
stored in .ftl files in a locales directory, and not in Elm source
files.

Justification

Some tools such as gettext encourage you to put localized text in source code
files, at least for ‘source language’, and then extract this text into other
files from which translation is done for the other (‘destination’) languages.

That approach has some advantages, but major disadvantages when it comes to
Fluent [https://projectfluent.org/]. Fluent is a language in its own
right, that puts (just enough) power into the hands of translators to produce
good translations, while maintaining proper separation of concerns.

For Fluent, developers need to put localized text into .ftl files, so the full
power of that language will be used. This includes:

	choosing good message IDs, and being aware of the issues surrounding changes to
IDs or changes to text without changing IDs

	adding comments that will help translators - this is often vital to give context,
because a single English word could be interpreted as a noun or adjective or verb.

	using Fluent constructs for things like variant selection, rather than using
Elm flow control constructs for variant selection, which would cause the
destination languages to suffer.

So, if your web app has a ‘notifications’ component with a title ‘Notifications’
and some intro text, you would have a locales/en/notifications.ftl file that looks
something like this:

notifications-title = Notifications

notifications-intro = Hello { $username }, you have unread notifications

You compile this to Elm files using ftl2elm. Normally the generated .elm
files, which appear under Ftl by default, should not be stored in your VCS,
you store only the .ftl files. You can then use these generated functions
from your Elm source code.

Your app first needs some way to determine the user’s current locale. This is
usually best done by allowing them to choose from a list, and then saving this
in the model somewhere. Let’s assume we have model.locale set up already.
Then our Elm source code might look like this:

import Ftl.Translations.Notifications as T

viewNotifications model =
 Html.div []
 [Html.h2 (T.notificationsTitle model.locale ())
 , Html.p (T.notificationsIntro model.locale { username = model.username })
]

The generated functions (in this case notificationsTitle and
notificationsIntro) all follow the same pattern in terms of signature - they
take a locale value and a strongly typed record of substitution parameters, and
return a string. (For advanced use cases, the functions return Html and take
an additional parameter that allows attributes to be added to the HTML).

Justification

Using a strongly typed record type means that we can catch the vast majority
of errors at compile time. If a translator includes a parameter in their
translation that is not passed by the developer, the code will not compile.
We can also ensure that numbers get passed as numbers etc.

Depending on the locale parameter, the generated functions dispatch to the
function for the correct language (we just have one so far).

You now need to distribute your .ftl files and get translations for the
other languages you support. These are saved into the correct sub folder in your
locales directory and committed to VCS. (Mozilla has developed the Pontoon [https://github.com/mozilla/pontoon] system which provides a GUI for editing
.ftl files, but elm-fluent doesn’t have good integration with it yet).

Finally, you can now compile the .ftl files for all the languages, compile
your Elm app and deploy.

Installation

Stable release

elm-fluent works primarily as a command line application that compiles .ftl
files to Elm code. This application is written in Python, and if you already have
a Python installation (3.4+) you can easily install it as follows.

We recommend using pipx [https://pypi.org/project/pipx/] to allow you to
install Python binaries in their own virtualenvs which are isolated from your
system Python. With pipx installed, do:

pipx install elm-fluent

Alternatively, you can manually create the virtualenv:

$ virtualenv my_virtual_env
$. my_virtual_env/bin/activate

Then install the latest version from PyPI using pip:

$ pip install elm-fluent

An executable ftl2elm should have been added to your PATH, in your system
bin or the virtualenv bin directory.

If you don’t have Python, pip [https://pip.pypa.io] or virtualenv installed, this Python
installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide you through the process.

From sources

The sources for elm-fluent can be downloaded from the Github repo [https://github.com/elm-fluent/elm-fluent].

Elm dependencies

The .elm files that elm-fluent produces have dependencies. At this point in
time, these dependencies are a bit problematic: the Fluent spec has built-in
date and number formatting functions [https://projectfluent.org/fluent/guide/functions.html#built-in-functions]
(DATETIME and NUMBER), as well as support for handling of plural forms,
which are covered by built-in browser Javascript modules Intl.DateTimeFormat [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat],
Intl.NumberFormat [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/NumberFormat]
and Intl.PluralRules [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/PluralRules]
respectively.

However, these Javascript APIs are not yet wrapped by any core Elm libraries,
although the core team are looking into it [https://discourse.elm-lang.org/t/state-of-localization-l10n-and-v0-19/1541/18],
and implementing them in pure Elm has many difficulties. Until there is an
official solution, elm-fluent depends on the elm-intl [https://github.com/vanwagonet/elm-intl/] wrapping.

Since this uses native/kernel modules, it can’t be uploaded to
packages.elm-lang.org, but it can be installed using elm-github-install [https://github.com/gdotdesign/elm-github-install/].

Elm 0.18 instructions

First install elm-github-install [https://github.com/gdotdesign/elm-github-install/] if you don’t have it.
Quick version:

$ npm install elm-github-install -g

Add the following dependencies to your elm-package.json:

"dependencies": {
 "thetalecrafter/elm-intl": "2.0.0 <= v < 3.0.0",
 "elm-fluent/elm-fluent": "1.0.0 <= v < 2.0.0"
}

and dependency sources - this will be a new section if you haven’t used
elm-github-install before:

"dependency-sources": {
 "thetalecrafter/elm-intl": {
 "url": "https://github.com/vanwagonet/elm-intl",
 "ref": "master"
 },
 "elm-fluent/elm-fluent": {
 "url": "https://github.com/elm-fluent/elm-fluent",
 "ref": "master"
 }
},

This adds the elm-fluent package (a very small module provided by this
project), and the elm-intl package. You should also check elm-intl [https://github.com/vanwagonet/elm-intl] installation notes for info regarding
polyfills.

Finally, run:

$ elm-install

Warning

NOTE: by using elm-github-install and adding these dependencies, you are
opening yourself up to the problems that Javascript code brings - you are
essentially trusting these packages in the same way that you currently trust
Javascript from core Elm packages, rather than relying on the Elm compiler to
protect you from many issues that Javascript brings.

Elm 0.19

Elm 0.19 has added restrictions that make it harder to use third party packages
with native code, so for the time being there is no easy way to install the
required dependencies with Elm 0.19.

Hopefully for Elm 0.19 we will have official Intl wrappers of some kind
soon. It will probably not be too hard to adapt the elm-fluent compiler to
depend on those libraries instead. This will likely mean some changes to user
code, but possibly just types/imports.

It is hoped that this project will provide feedback/prototyping that will help
to shape a useful set of Intl wrappers for package.elm-lang.org.

Tutorial

Tutorial contents

	Intro

	One-time project changes

	Extract localized text

	Substitutions

	Number substitutions and plural rules

	Message attributes

	HTML output

	Dynamic HTML output

	Final steps

Intro

This tutorial will start from the assumption that you already have an app which
hard codes a single language. This is the ‘source language’, and we’ll assume
it’s English for simplicity. You will be introduced to most of the key features
of the Fluent language (although it is recommended that you also read the
Fluent guide [https://projectfluent.org/fluent/guide/] fully), and some key
principles of internationalization.

If you are already using another i18n/translation solution, hopefully it should
be obvious how to adapt this tutorial for your situation.

Our example will be a ‘notifications’ page in a web app. The full sources of
this demo app are available, and it may be useful to have them open as you read
the tutorial:

	Notifications app without Fluent [https://github.com/elm-fluent/elm-fluent/tree/master/docs/tutorial_code/pre]

	Notifications app with Fluent [https://github.com/elm-fluent/elm-fluent/tree/master/docs/tutorial_code/post]

It consists of a title, a search bar, a list of notifications and some buttons
for deleting or ‘mark as read’ — here it is in all its unstyled glory:

[image: Notifications app screenshot]
It is assumed you have followed the Installation documentation for
setting up your project with elm-fluent.

One-time project changes

As you start to internationalize your app, there are some one time changes
you’ll need, usually across your whole app. For this demo, our whole app is one
page, to keep it simple, but for your app your would need to put the initial
plumbing in the right place so that it applies across everything.

Our first step is to keep track of the user’s choice of locale. This could come
from a server side setting that is passed into your app via flags, or it could
be handled entirely from Elm code. For our demo, we will default to English and
have a simple select box for changing the language, and we won’t be saving the
preference anywhere (but you would need to do that for a real app).

First we need an import:

import Intl.Locale as Locale

Then we need to add a field to our model:

type alias Model = {
 { locale : Locale.Locale
 -- (etc.)
 }

and add a default value:

defaultLocale : Locale.Locale
defaultLocale =
 Locale.en

init : Flags -> (Model, Cmd Msg)
init flags =
 ({ locale = defaultLocale
 -- (etc.)
 }
 , Cmd.none
)

We’ll want a list of locales/languages we support, with some kind of caption:

availableLanguageChoices : List (String, String)
availableLanguageChoices =
 [("en", "English")
 , ("tr", "Turkçe")
]

Here we’ve used the localized name of the language as the caption. To make it
easier for people to find their own language, and get back if they accidentally
change the language to Chinese etc., we won’t translate these depending on the
user’s choice of language. So this is one of the few times that we’ll hard code
localized text into our Elm file (although there are other ways to do this).

For each language tag (the first value in the tuples above), we want a
Locale object as well:

availableLocales : List (Locale.Locale, String)
availableLocales =
 List.map
 (\(languageTag, caption) ->
 (Locale.fromLanguageTag
 languageTag
 |> Maybe.withDefault defaultLocale
 , caption
)
)
 availableLanguageChoices

Note

The Locale.fromLanguageTag function can fail, in which case it returns
Nothing, hence the use of withDefault above. The function actually
only fails if you pass invalid language tags — it does not fail if you pass a
valid BCP47 language tag [https://www.w3.org/International/articles/language-tags/] that the browser
doesn’t happen to support. We only passed valid language tags, but the
compiler doesn’t know that, so we still need the fallback here although it
won’t be used in practice.

We’ll need a message to change locale:

type Msg
 = ChangeLocale Locale.Locale
 -- (etc.)

And we need to handle that message:

update : Msg -> Model -> (Model, Cmd Msg)
update msg model =
 let
 newModel =
 case msg of
 ChangeLocale locale ->
 { model
 | locale = locale
 }
 -- etc.

We need some UI to select a different locale (you can skip this step for now if
you just want to try the system out using the default English locale). The
following is a simple select widget that will trigger ChangeLocale when
it is changed:

viewLocaleSwitcher : Model -> List (H.Html Msg)
viewLocaleSwitcher model =
 [H.text "Change language: "
 , H.select []
 (List.map
 (\(locale, caption) ->
 H.option [E.onClick (ChangeLocale locale)]
 [H.text caption]
)
 availableLocales
)
]

And we need to include this somewhere in the page by adding it to the main
view function (left as an exercise for you!).

Also left as an exercise for you - if you change a page locale/language, you
should always remember to set the lang attribute [https://www.w3.org/International/questions/qa-html-language-declarations] on
the root <html> element, and you may want to update the document <title>
as well. You’ll probably need to do both of these using a port (because
typically these elements are outside of the root element that Elm controls).

Extract localized text

Now that the basic setup of the project has been done, we can begin extracting
localized text (i.e. all the English text that needs to be translated) into
.ftl files.

You need to create a locales directory to store these files. This can go
anywhere, as the ftl2elm program allows you to specify the location using
--locales-dir. We will use the default, which is to place it in the same
directory as your top level Elm source files.

Within it, create an en directory to store the English .ftl files.
Within that you can create any number of sub folders, as your project structure
dictates. We will create a file notifications.ftl directly within en
that will contain the messages for our Notifications module.

Note

You have flexibility in how you structure your FTL files and the folders that
contain them. A good pattern is to structure these files and folders in a way
that mirrors the rest of your project structure.

Now we will create our first FTL message. Our view function currently looks like:

view : Model -> H.Html Msg
view model =
 H.div []
 [H.h1 [] [H.text "MyApp Notifications"]
 -- etc
]

"MyApp Notifications" needs to be localized, so we’ll pull it out into
notifications.ftl. This is one of the simplest possible messages — an
entirely static string with no substitutions, which will look like this in our
notifications.ftl file:

This title appears at the top of the notifications page
notifications-title = MyApp Notifications

Notice:

	The comment which begins with # — comments can be really important in
creating .ftl files that are understandable and well organized. The
Fluent guide has more information [https://projectfluent.org/fluent/guide/comments.html].

For brevity this tutorial will omit comments for the rest of the messages we
add.

	The notification- prefix.

This is used as an adhoc prefix to indicate the component/page this message
belongs to. This is not strictly necessary with elm-fluent, but has several
advantages:

	If you want to combine FTL files at some point, it will help to avoid name
clashes. You may also want to use the same FTL files with other
technologies (e.g. server side rendering), and these technologies tend
to use bundles that combine multiple .ftl files.

	It will result in an Elm function that has a longer name, and so helps
reduce the possibility of name clashes with other functions. To avoid
problems, elm-fluent refuses to generate functions that would clash with
default imports [https://package.elm-lang.org/packages/elm/core/latest/Basics].

	It is the convention used by Mozilla for their message IDs, and so
is a standard.

	The naming style:

The naming style used here is words-separated-with-hyphens. This is the
normal convention in Fluent. These are not valid identifiers in Elm, and so
are converted to camelCase by ftl2elm. You could also use camelCase
directly as your message ID e.g. notificationsTitle

Now run the ftl2elm:

ftl2elm --verbose

(See also ftl2elm --help for other options, especially if you are using a
different directory layout.)

You’ll hopefully see output like the following:

Writing files:

Writing Ftl/EN/Notifications.elm
Writing Ftl/Translations/Notifications.elm
Success!

(This tutorial won’t mention running ftl2elm again - every time you change
.ftl files you’ll need to run ftl2elm again - or, use the --watch
option and leave it running).

Let’s look at Ftl/EN/Notifications.elm. This is a compilation of our
notifications.ftl, and it looks something like this (slightly abridged):

module Ftl.EN.Notifications exposing (notificationsTitle)

import Intl.Locale as Locale

notificationsTitle : Locale.Locale -> a -> String
notificationsTitle locale_ args_ =
 "MyApp Notifications"

The body is as simple as you would expect for this simple case — it just returns
the string!

In addition, there is a similar function in Ftl/Translations.elm. The sole
purpose of this function is to dispatch to the correct language, depending on
the locale you pass in. It looks something like this (a bit redundant at the
moment, as we only have one language so far):

module Ftl.Translations.Notifications exposing (notificationsTitle)

import Ftl.EN.Notifications as EN
import Intl.Locale as Locale

notificationsTitle : Locale.Locale -> a -> String
notificationsTitle locale_ args_ =
 case String.toLower (Locale.toLanguageTag locale_) of
 "en" ->
 EN.notificationsTitle locale_ args_
 _ ->
 EN.notificationsTitle locale_ args_

This is the function we’ll be using from our Notifications.elm module. First
some imports are needed:

import Fluent
import Ftl.Translations.Notifications as T

Then we modify the view function to use the generated function:

view : Model -> H.Html Msg
view model =
 H.div []
 [H.h1 [] [H.text (T.notificationsTitle model.locale ())]
 -- etc.
]

Note we always pass:

	the locale value

	a value containing substitution parameters (if any).

In this case we have no substitution parameters, so we can pass any value, and
we chose the empty value () for simplicity.

First message done! You can check your project compiles and works.

Note

Generated Ftl files

A bunch of files have been generated in a Ftl folder. You shouldn’t edit
these directly, or add them to VCS. Be sure to add this folder to
.gitignore (etc.)

Substitutions

The next bit of our view consists of some Elm code [https://github.com/elm-fluent/elm-fluent/blob/master/docs/tutorial_code/pre/Notifications.elm#L118]
that generates text like the following:

Hello, Mary. You have 2 unread messages.

We can split this into two messages.

Note

Splitting of localized text has to be done very carefully. One of the key
principles of translating apps is that you cannot split a sentence or label
into parts and translate the parts separately. This might work for English,
but will fail for other languages. Usually if you have several unrelated
sentences in a block of text, you can split them into a message for each
sentence, but do not split up a sentence (or other text fragment like a
title) further.

Our first message is a greeting, but it has a substitution. It will look like this in our FTL file:

notifications-greeting = Hello, { $username }.

And we use it like this in our Elm code:

[H.text (T.notificationsGreeting model.locale { username = model.userName })
-- (etc.)
]

Notice how we pass substitutions in a record type. The signature for
notificationsGreeting looks like this:

notificationsGreeting : Locale.Locale -> { a | username : String } -> String

This means if you fail to pass this argument in your Elm code, or try to pass
something of the wrong type, you’ll get a compilation error, which is exactly
what we want to happen.

Number substitutions and plural rules

The next sentence we need to internationalize is "You have X unread
messages.".

The Elm code we are starting with looks like this:

H.text
 (let
 unreadNotificationsCount =
 unreadNotifications model |> List.length
 in
 if unreadNotificationsCount == 1 then
 "You have 1 unread message."
 else
 ("You have " ++ toString unreadNotificationsCount ++ " unread messages.")
)

There are some big issues with this code:

	It hard-codes English language pluralization rules. In English, we use the
singular form for 1, and plural form for everything else (including zero).
This pattern does not apply to other languages. So we need to move this logic
into the FTL file, where translators are able to apply the correct logic for
their language.

	It hard-codes a number formatting function that is only appropriate for some
languages. If we were using floating point numbers, we can easily get
completely wrong number formatting. For example, 1.002 (“one and two
one-thousandths”) can be written in English as the string "1.002".
However, in most European locales, that string means “one thousand and two”,
while "1,002" means “one and two one-thousandths”.

Fluent fixes these things for us. We pull out the entire message into FTL like
this, using Fluent selector syntax [https://projectfluent.org/fluent/guide/selectors.html], to produce the
following which is appropriate for English:

notifications-unread-count = { $count ->
 [one] You have 1 unread message.
 *[other] You have { NUMBER($count) } unread messages.
 }

Our view code looks like this:

H.text
 (T.notificationsUnreadCount model.locale
 { count = Fluent.number (unreadNotifications model |> List.length) }
)

This time, instead of passing a string as an argument, we pass a number. We
actually pass it as a Fluent.FluentNumber number value. The purpose of
FluentNumber is that it allows us to optionally pass formatting options
along with the number. In this case we didn’t add formatting options, so we just
used Fluent.number. We could have used Fluent.formattedNumber to
specify formatting options (which includes things like currencies).

It is also possible for the translators to add parameters using the NUMBER
builtin [https://projectfluent.org/fluent/guide/functions.html#number].

Similarly, not covered in this tutorial, there is the Fluent DATETIME builtin [https://projectfluent.org/fluent/guide/functions.html#datetime], and
elm-fluent functions Fluent.date and Fluent.formattedDate which
are used to pass dates into messages.

Message attributes

The next piece of HTML we need to internationalize is the search box. The Elm
code looks like this:

viewSearchBar : Model -> H.Html Msg
viewSearchBar model =
 H.div []
 [H.input
 [A.type_ "search"
 , A.name "q"
 , A.placeholder "Search"
 , A.attribute "aria-label" "Search through notifications"
 , A.value model.searchBoxText
 , E.onInput SearchBoxInput
]
 []
]

We can continue with this in exactly the same way as before — creating a message
for each piece of English text that needs to be translated. One need that often
crops up in web apps is that we have some closely related pieces of text, and we
might want to group them more tightly. In the case above we have two pieces of
text that appear as part of the search box - "Search" as the placeholder,
and "Search through notifications" as the ARIA label [https://www.w3.org/TR/wai-aria-1.1/#aria-label], which will be used by screen
readers.

There is a Fluent feature designed exactly for this case, called attributes. We
can create an FTL message as follows:

notifications-search-box =
 .placeholder = Search
 .aria-label = Search through notifications

This will create two message functions for us. In this case, to produce valid
Elm identifiers, the . is translated to an underscore, so we end up with
notificationsSearchBox_placeholder and notificationsSearchBox_ariaLabel.
These can be used in the same way as before, so our Elm code becomes:

viewSearchBar : Model -> H.Html Msg
viewSearchBar model =
 H.div []
 [H.input
 [A.type_ "search"
 , A.name "q"
 , A.placeholder (T.notificationsSearchBox_placeholder model.locale ())
 , A.attribute "aria-label" (T.notificationsSearchBox_ariaLabel model.locale ())
 , A.value model.searchBoxText
 , E.onInput SearchBoxInput
]
 []
]

This example also illustrates the use of localized text in attributes — because
our translation functions simply return strings, their output can be used in a
wide variety of contexts.

HTML output

Although string output is the most flexible, there are times when you need HTML
output.

For example, we may simply want to highlight some text in some way. Suppose in our
greeting we want to highlight the username in bold:

Hello Mary, so nice to have you back!

Remember that a key rule of i18n is that we mustn’t attempt to split this into
parts, translate separately, and put back together. We need to keep these parts
together as a single, translatable unit.

This is handled in elm-fluent simply by giving the message ID a special suffix -
-html or Html — and then putting the desired HTML markup directly in the
.ftl file:

notifications-greeting-html = Hello { $username }, so nice to have you back!

In this case, ftl2elm will generate a function which returns List (Html
msg) instead of String. You can use it just as you expect, e.g.:

H.p []
 (T.notificationsGreetingHtml model.locale { username = model.userName } [])

Note, however, this takes one extra parameter, for which we passed an empty
list. The purpose of this parameter is explained in the next section.

Before we go on, there are a few things to note:

	Compare the combined FTL + Elm you have above with what you would have had
before if you had written it all in Elm:

H.p []
 [H.text "Hello "
 , H.b [] [H.text model.userName
]
 , H.text ", so nice to have you back!"
]

You may notice that your code, even when you add back in the FTL, is now
shorter and much more readable! This is just a little bonus that comes from
using a purpose-designed language like FTL, and a compiler (ftl2elm) that will
generate all that Html code for you…

	elm-fluent can handle a lot more than this simple case — all the other Fluent
features can be combined with HTML. This includes also being able to use
attributes in the HTML, and substitutions within attributes etc.

There are a few limitations. You cannot have substitutions or other similar
constructs in element names or attribute names, for example:

bad-message-1-html = Some <{ $arg }>text</{ $arg }>

bad-message-2-html = Some <b { $arg }="value">text

There are also limitations with respect to Fluent’s mechanism for message
references [https://projectfluent.org/fluent/guide/references.html]. You can
reference both HTML and plain text messages from HTML messages, and it will do
the right thing, but you cannot reference an HTML message from a plain text
one. (This might be obvious from the type system - we can embed String
into List (Html msg) via Html.text, but we can’t embed List (Html
msg) into String.

	You should consider carefully how much HTML you should put into your FTL
files, and keep it as simple as possible. Remember it will be read and
translated by translators who may not be experts in HTML. Use the mechanisms
described in the next section to keep as many HTML attributes in your Elm code
as possible.

Dynamic HTML output

The above mechanism works fine for simple cases, but in Elm we often have more
complex HTML, and in particular we have Html constructs that cannot be
simply embedded into FTL files as a string.

For example, in our demo app, when you press the ‘Delete’ button, you get a
confirmation panel that has hyperlinks like this:

These 2 messages will be permanently deleted - cancel or confirm

…except that ‘cancel’ and ‘confirm’ are hyperlinks with behavior attached. The
original Elm code looks like this:

[H.text "These "
, H.text <| toString <| Set.size model.selectedNotifications
, H.text " messages will be permanently deleted - "
, H.a
 [A.href "#"
 , onClickSimply DeleteCancel
]
 [H.text "cancel"]
, H.text " or "
, H.a
 [A.href "#"
 , onClickSimply DeleteConfirm
]
 [H.text "confirm"]
]

We need the a elements to be embedded in translatable text (as discussed
above — we don’t want to split this text up). But we also need a way to attach
those event handlers to the anchors, and we need to ensure we don’t mix up those
event handlers.

(Also, we got lazy above and didn’t handle the case of a single message very
well — we’ll fix that as we go).

This is probably one of the most complex examples you’ll come across, so the
next section will be a little bit heavy. But if you can master this you have the
tools to handle any similar situation.

Let’s start with a first attempt at our FTL message:

notifications-delete-confirm-panel-html =
 { $count ->
 [one] This message
 *[other] These { $count } messages
 } will be permanently deleted - <a>cancel or <a>confirm

and our Elm code to call it:

T.notificationsDeleteConfirmPanelHtml model.locale { count = Fluent.number <| Set.size model.selectedNotifications } []

This will produce the right text, but the ‘cancel’ and ‘confirm’ parts don’t do
anything, or even look like links yet.

If you look at the type signature of the generated
notificationsDeleteConfirmPanelHtml, you’ll find this:

notificationsDeleteConfirmPanelHtml : Locale.Locale -> { a | count : Fluent.FluentNumber number } -> List (String, List (Html.Attribute msg)) -> List (Html.Html msg)

That final parameter looks a bit intimidating, but it is simply a way of passing
the attributes that we would have attached directly before. To break it down, it
is a list of tuples, where each tuple consists of:

	A string element, whose value should be a CSS selector (a very limited subset of CSS selectors, to be precise)

	A list of attributes that are attached to the elements that match those CSS
selectors.

So, for a start, for our a elements to be actually rendered as hyperlinks,
they need an href value. Both anchors match the CSS selector a, so let’s
replace that final empty list with:

[("a", [A.href "#"])]

Rebuild, and you’ll find the two a elements at least appear as links.

We now need to attach the event handlers. In most cases, in a single piece of
translatable text we would only have a single link or ‘active’ element that
needs attributes, so we would just add more attributes to the list above — like
this:

[("a", [A.href "#"
 , onClickSimply DeleteConfirm
])
]

But in this case we need to attach different handlers to the different elements,
and they are both anchors. This means we will need to change the FTL message so
that the two a elements can be distinguished somehow.

To enable this, elm-fluent supports a subset of CSS selectors. The full list is:

	Type

	Example

	element

	a

	class

	.foo

	id

	#mything

	attribute present

	[data-bar]

	attribute value

	[data-bar=”value”]

	element and class

	a.foo

	element and id

	a#mything

	element and attribute present

	a[data-bar]

	element and attribute value

	a[data-bar=”value”]

For our purposes, we’re going to add two adhoc data- attributes to our
message — plus an explanatory note for the translators. We’ll actually start
them both data-ftl- — these attributes will appear in the final rendered
HTML, and we probably want to avoid clashing with other data- attributes we
might be using for other purposes. So our FTL looks like this:

Confirmation message when deleting notifications.
It includes two hyperlinks - 'cancel' to cancel the deletion,
and 'confirm' to continue.
You must wrap the 'cancel' text in:
#
<a data-ftl-cancel>...
#
and wrap the `confirm' text in:
#
<a data-ftl-confirm>...
#
notifications-delete-confirm-panel-html =
 { $count ->
 [one] This message
 *[one] These { $count } messages
 } will be permanently deleted - <a data-ftl-cancel>cancel or <a data-ftl-confirm>confirm

Our Elm code becomes:

T.notificationsDeleteConfirmPanelHtml model.locale
 { count = Fluent.number <| Set.size model.selectedNotifications }
 [("a", [A.href "#"])
 , ("[data-ftl-cancel]", [onClickSimply DeleteCancel])
 , ("[data-ftl-confirm]", [onClickSimply DeleteConfirm])
]

That’s it! The generated code in notificationsDeleteConfirmPanelHtml takes
care of adding the passed in attributes to the right nodes, so you get the same
functionality as before.

Let’s just take stock of what we have to do for these cases:

	Pull out the text and the essential HTML structure into FTL.

	For all the attributes we were attaching before, create a CSS selector to
match the HTML node they should be attached to, and put them together in a
tuple, passing the list of tuples as the final parameter to the message
function.

	If necessary, add some attributes to the HTML in the FTL file to disambiguate
the HTML nodes, and adjust the CSS selectors accordingly.

The result is that we have a clean separation of concerns. Our localized text is
in one place, and it has the flexibility to structure the text and any embedded
HTML in any way necessary for the language. The text is actually much more
succinct and readable than before.

Our behavior is still all defined in Elm, though, where we want it. Admittedly
it has become more dense, but we’ve only had to make simple, local changes.

Note

Performance

This use of CSS selectors might make some people worry about performance. Is
there some heavy HTML parsing going on behind the scenes?

In reality, all the HTML parsing happens at compile time i.e. when
ftl2elm runs. We know at compile time the exact list of supported CSS
selectors that each node can match. For example, if we have in the FTL, the complete list is a, .foo and
a.foo. The generated code for that node does a simple List.filter on
the passed in attributes to find these 3 selectors. This is a little bit more
expensive than the original code, but there isn’t any heavy lifting going on
at runtime.

Final steps

Having now completed our English notifications.ftl file, the next step is to
distribute this to translators, so that they can produce similar ones, but in
the target languages. When returned, these will be added to your project in new
directories under locales using the same structure as before and committed
to source control (like the original).

Finally, we can use ftl2elm to compile everything as part of our deployment
process. ftl2elm can pick up quite a few errors in FTL files itself, and
will complain loudly by default and fail. Other errors will be picked up by the
Elm compiler (e.g. missing arguments to messages), to ensure that you can’t
deploy with broken translations.

Number handling functions

Fluent.number

TODO!

Fluent.formattedNumber

TODO!

Example of how it works is in the tests:

	https://github.com/elm-fluent/elm-fluent/blob/641a3bd889a95f165ff70348a321698455ce907d/tests/test_project/Main.elm#L154

	https://github.com/elm-fluent/elm-fluent/blob/641a3bd889a95f165ff70348a321698455ce907d/tests/test_project/Main.elm#L88

Date handling functions

Fluent.date

TODO!

Fluent.formattedDate

TODO!

Example of how it works is in the tests:

	https://github.com/elm-fluent/elm-fluent/blob/641a3bd889a95f165ff70348a321698455ce907d/tests/test_project/Main.elm#L160

	https://github.com/elm-fluent/elm-fluent/blob/641a3bd889a95f165ff70348a321698455ce907d/tests/test_project/Main.elm#L103

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/elm-fluent/elm-fluent/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

elm-fluent could always use more documentation, whether as part of the
official elm-fluent docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/elm-fluent/elm-fluent/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up elm_fluent for local development.

	Fork the elm-fluent repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/elm-fluent.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv elm_fluent
$ cd elm-fluent/
$ python setup.py develop
$ pip install -r requirements_dev.txt

We also need Elm and some other tools installed. If you don’t already have it
installed and available on your path, you can use nodeenv to first create a
nodejs virtualenv:

$ nodeenv --python-virtualenv

Reload the virtualenv for changes to take affect:

$ deactivate
$ workon elm_fluent

And then install things into it:

$ npm install -g elm@0.18 elm-test@0.18 elm-github-install

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 elm_fluent tests
$ py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

A fast test run:

$ py.test -k-slow

See py.test docs for more collection options

Show the browser for the end to end tests:

$ TEST_SHOW_BROWSER=1 py.test

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.4, 3.5 and 3.6, and for PyPy. Check
https://travis-ci.org/elm-fluent/elm-fluent/pull_requests
and make sure that the tests pass for all supported Python versions.

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Luke Plant <L.Plant.98@cantab.net>

Contributors

None yet. Why not be the first?

History

0.6.0 (2020-04-09)

	Big rewrite of the type inference/checking mechanism, with more accurate
error messages now.

0.5.0 (2019-08-15)

	Updated to Syntax 1.0 (fluent.syntax 0.15)

	Various bug fixes and small improvements

0.4.0 (2019-03-18)

	ftl2elm –include option

	Dropped Python 2.7 support

0.3.0 (2019-03-06)

	Syntax 0.8 support, including parameterized terms.

	Better compile-time resolution of some expressions.

0.2.1 (2018-12-19)

	Fixed python-fluent dependency to an older version (< 0.9), because it
doesn’t work with newer versions. Thanks @stasm for the report.

0.2.0 (2018-09-10)

	Better handling for a large variety of error conditions

	Proper fallback mechanism implemented

	Added --watch option.

	Eliminate unused imports from generated code

	Various bug fixes:

	Avoid outputting .elm files with no exports

	Bugs with HTML attributes and non-string message args

	Crasher with multi-line messages

	Crasher when a message is missing from default locale

0.1.0 (2018-07-27)

	First release on PyPI.

Index

 _static/comment-bright.png

_images/notifications_app.png
MyApp Notifications

You have 1 unread message.
Search

Message
[Your order has been scheduled, and should be with you in a
few days.

Thank you for your payment!
Welcome to MyApp! Hope you enjoy it.

Delete. Mark read Mark unread

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to elm-fluent’s documentation!

 		
 Overview

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Elm dependencies

 		
 Elm 0.18 instructions

 		
 Elm 0.19

 		
 Tutorial

 		
 Intro

 		
 One-time project changes

 		
 Extract localized text

 		
 Substitutions

 		
 Number substitutions and plural rules

 		
 Message attributes

 		
 HTML output

 		
 Dynamic HTML output

 		
 Final steps

 		
 Number handling functions

 		
 Fluent.number

 		
 Fluent.formattedNumber

 		
 Date handling functions

 		
 Fluent.date

 		
 Fluent.formattedDate

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.6.0 (2020-04-09)

 		
 0.5.0 (2019-08-15)

 		
 0.4.0 (2019-03-18)

 		
 0.3.0 (2019-03-06)

 		
 0.2.1 (2018-12-19)

 		
 0.2.0 (2018-09-10)

 		
 0.1.0 (2018-07-27)

_static/up-pressed.png

_static/notifications_app.png
MyApp Notifications

You have 1 unread message.
Search

Message
[Your order has been scheduled, and should be with you in a
few days.

Thank you for your payment!
Welcome to MyApp! Hope you enjoy it.

Delete. Mark read Mark unread

_static/plus.png

_static/up.png

